Deepwater Horizon Oil Spill Salt Marsh Treatment Tests: Monitoring Results

Scott Zengel Jacqueline Michel NOAA Scientific Support Team DWH SCAT Program

Invited Presentation INTECOL Wetland Conference 2012

Initial Oiling Conditions

Bay Jimmy, N. Barataria Bay Louisiana

June 2010

Heavy Persistent Oiling Conditions

September 2010 and beyond

Heavily oiled wrack lines
 Heavily oiled vegetation mats
 Thick oil trapped on the marsh surface

Heavily Oiled Vegetation Mats

Laid Over Vegetation

Thick oil (mousse) trapped under the oiled vegetation mats

Marsh Treatment Tests

- Initiated due to the degree and nature of oiling, potential for delayed marsh recovery, and risk of additional cleanup impacts
- Treatment goal was to improve oil weathering and degradation and enhance habitat recovery, without causing further harm; goal was <u>not</u> to remove all the oil
- Conducted to support cleanup planning, environmental review, and adaptive cleanup operations

	vegetation saking only	-00/00301331000	21.444401012300	V N	219.2
2	Vegetation Raking Followed by Flushing	-89.88878721810	29,44437319170	VRFL	10/1
3	Natural Recovery	-89.68857158920	29.44427299160	NR	10/1
4	Vegetation Raking Followed by Vacuum	-89.88842494840	29.44421584510	VRVA	20/1
5	Vegetation Raking Followed by PES-51 And Flushing	-89.88817358670	29.44410852390	VRSWA1	10/1
6	Vegetation Raking Only	-89.88797530510	29.44402128880	VR	10/1
7	Vegetation Raking Only	-89.88778097080	29.44392701940	VR	10/2
8	Natural Recovery	-89.88757866920	29.44382392270	NR	10/1
9	Vegetation Raking Followed by Cytosol and Flushing	-89.88737474520	29.44375274060	VRSWA2	10/1
10	Vegetation Raking Only	-89.88719728300	29.44362115390	VR	10/2
11	Vegetation Raking and Cutting	-89.88697647420	29.44350366300	VRC	12/
12	Natural Recovery	-89.88679690840	29.44334029810	NR	12/
13	Natural Recovery	-89.88920360280	29.44450275560	NR	10/1
14	Vegetation Raking Only	-89.88940533810	29.44454910800	VR	10/1
15	Natural Recovery	-89.88958645880	29.44457616830	NR	10/2
16	Natural Recovery	-89.88977443530	29.44464124450	NR	12/
17	Vegetation Raking and Cutting	-89.88996282290	29.44471771970	VRC	12/
18	Natural Recovery	-89.89013837790	29.44478266590	NR	12/
19	Natural Recovery	-89.89026300000	29.44481100000	NR	12/
20	Vegetation Raking and Cutting	-89.89037400000	29.44483200000	VRC	12/
21	Vegetation Raking and Cutting	-89.89049900000	29.44485900000	VRC	12/
22	Vegetation Raking and Cutting	-89.89061800000	29.44487000000	VRC	12/
23	Natural Recovery	-89.89073200000	29.44489500000	NR	12/
29	Mechanical Raking	-89.88968600000	29.44459700000	M-VR	2/1

6/201

Test Plot Layout

Plot size 6 m x 8-10 m

Treatment Options Tested

- Low pressure flushing
- Vegetation mat cutting (weed trimmers)
- Marsh burning (small-scale)
- Manual raking
- Raking & low pressure flushing
- Raking, surface washing agents, & flushing
- Raking & vacuum treatments
- Raking & power cutting
 - Natural recovery (no treatment)

Raking & Cutting, Dec. 2010 Immediate Post-Treatment

Total removal of the oiled vegetation mats and wrack

Post-Raking & Cutting 1-month

Removed or reduced thick mousse layer

Residual oil weathering and breaking up

Monitoring Results

- Preliminary results
- Basic statistical analysis

- Data presented mainly from September 2011, 1+ year after initial impact, 9 months posttreatment, and after Tropical Storm Lee
- Comparison categories
 - 1) Reference no to minimal oiling, vegetation intact
 - 2) Heavily Oiled, Treated raking and cutting
 - 3) Heavily Oiled, Untreated natural recovery only

Monitoring Parameters

Oil cover per oiling zone (%)
Oil thickness (cm) and character
Oil in subsurface sediments

TPH, Total PAH (mg/kg)

Vegetation cover and composition
Benthic faunal densities (#/m²)

Fiddler crab burrows (Uca spp.)
Marsh periwinkles (Littoraria irrorata)

• Erosion

- Shoreline change (m/yr)
- Soil shear strength (kPA)

Oil Cover, Vegetation Mats & Wrack, Sept. 2011

Oil Cover, Sediment Surface, Sept. 2011

Oil Remobilization on New Vegetation, Sept. 2011

Oil Remobilization to Interior Vegetation, Sept. 2011

Oil Thickness (cm) & Oil Character, Sept. 2011

Oil in Subsurface Sediments (TPH), July-Aug 2011

Oil in Subsurface Sediments (tPAH), July-Aug 2011

Total Vegetation Cover, Sept. 2011

Vegetation Species Composition, Sept. 2011

Fiddler Crab Burrow Density, Sept. 2011

Marsh Periwinkle Density, Sept. 2011

Shoreline Change, Oct/Dec. 2010-Nov. 2011

Marsh Soil Shear Strength, 0-6 cm depth, Feb. 2012

(from Lin and Mendelssohn, unpublished data)

Monitoring Conclusions

- Persistent oiling and continuing ecological effects observed in heavily oiled marsh more than 1 year after oiling
- Signs of enhanced initial habitat recovery observed with treatment at 9 months post-treatment (first growing season)
- No additional impacts from treatment observed (9 months post-treatment)

Operational Application

- Initial test results used to development an operational Shoreline Treatment Recommendation (STR) in January 2011
- STR S3-045 was applied from February to September 2011
- A total of 11 km (7 mi.) of shoreline were treated (~1% of oiled marshes Gulf-wide)
- 4,915 m³ (6,429 CY) & 486 tons (metric) of oil and oiled debris removed
- Caution these treatments were only applicable for the most heavily oiled shorelines

Acknowledgements

